

New perspectives on changes in tropospheric NO₂ from the OMI and TROPOMI sensors

Folkert Boersma

Alba Lorente, Henk Eskes, Pepijn Veefkind, Jos van Geffen, Maarten de Zeeuw, Hugo Denier van der Gon, Steffen Beirle, and Maarten Krol

NO₂ plumes in the Benelux

Right after instrument cooler opened

No measured solar irradiance spectrum yet

VIIRS nighttime lights

NO₂ plumes from Paris

NO₂ plumes from Paris

TROPOMI NO₂ tropospheric VCD

ECMWF ERA-I wind speed @BL

23 February 2018

Wind at 12 UTC

NO₂ increase over Paris

'urban background' surface measurement

NO₂ increase over Paris

O 'urban background' surface measurement

SUNDAY

Validation of TROPOMI v1.1 at Eiffeltower

NO₂ line density over Paris

Slide 8 - EOS-Aura meeting, 28 August 2019

NO₂ line density over Paris

Emission pattern matters

Simulate line density by accounting for spatially varying emissions

$$N_{i}(x) = \frac{E(x_{i})}{k} \left(1 - e^{-k(x - x_{i})/u}\right) \frac{[NO_{2}]}{[NO_{x}]} \quad \text{for } x \ge x_{i}$$

$$N_{i}(x) = 0 \quad \text{for } x < x_{i}$$

$$N(x) = \sum_{i=1}^{n} N_{i}(x)$$

TNO emission pattern - - - -

Superposition model

Large ensemble of modeled line densities

Fixed parameters

boundary layer mean ECMWF wind

NO_x:NO₂ boundary layer mean from CAMS model

Varied parameters (5+1)

 E_i – initial guess from TNO-MACC-III inventory

k – initial guess from CAMS model, uncertain because of [OH]

x [km]

Paris NO_x emissions Feb - Jun 2018

- Daily emission estimates
- TROPOMI captures weekend reductions
- February: TROPOMI higher than inventory
- Apr-June: TROPOMI comparable to TNO-MACC-III (2018)

Summary

- TROPOMI captures build-up of NO₂ over a source region
 - Information on spatial distribution of emissions!
- Estimate noontime NO_x emissions on a day-by-day basis
 - Weekend effect clearly seen!
- TROPOMI NO_x emissions 5-15% lower than inventory for 2012
 - long way from projected 26% reductions for 2018 vs. 2011

Day with stagnation

Some needs for OMI and TROPOMI NO₂

Lessons learned from the FP7 QA4ECV project

Need pixel-scale information on state-of-the-atmosphere!

- Take surface reflectance anisotropy into account
- This means: replace LER in cloud and NO₂ AMF calculation
- Pixel-resolution a priori profiles of NO₂
- This means: replace profiles from coarse-scale models

TM5 at $100x100 \text{ km}^2 \rightarrow \text{WRF-Chem } 20x20 \text{ km}^2$

Visser et al., ACP, 2019

Some needs for OMI and TROPOMI NO₂

(c) Directional GOME-2A Min LER 494 nm

Lorente et al., AMT, 2018

3-D effects of clouds

Foto Tim Vlemmix

Focus on The Netherlands

Focus on The Netherlands

NO_x emission pattern

Constraint on emission patterns:

- TROPOMI provides information on the sub-urban distribution of emissions in Paris.
- The spatial variability in our inferred NO_x emissions is similar to the a priori distribution from TNO-MACC-III.

Ensemble of forward model simulations

17th April 2018 T12:18 UTC Wind 24 km/h , wind_dir = 197°

Levenberg-Marquardt

Best ensemble member

Uncertainties in NO_x emissions

- Replace NO_x:NO2 ratio CAMS by Eiffel Tower: <3% difference
- Wind speed uncertainty of ±20% has similar effect
- Replacing CAMS by CLASS a priori [OH] has some effect
- Weak sensitivity to emission pattern (next slide)

	Uncertainty	Effect on NO _x emissions
S5P-TROPOMI NO ₂ column	30%	30%
NO ₂ :NO _x ratio	20%	<3%
Wind speed	20%	20%
A priori NO _x loss rate	50%	15%
A priori emission pattern	20%	10%
Total uncertainties assuming		$\pm 50\%$
uncorrelated error contributions		

Discussion

Clear-sky days only, emissions for noon-time Method requires advection in well-defined direction (no re-circulation)

OH in Paris BL from CAMS vs. CLASS

Weak constraint on NO_x lifetimes:

±11 hrs in February

2-4 hrs in April-June

NO_x lifetimes merely represent an improvement to prior, uncertain knowledge on OH concentrations from the CAMS model, constrained via the observed line densities.

The lifetimes correspond to [OH] of 1-12×10⁶ molec./cm³, consistent with other estimates^{7,16,24,25}.

Day with stagnation

Superposition model (1)

- Forward model function that simulates NO₂ line density as a function of distance x over the city.
- Individual *i* representations of the column model:

$$N_{i}(x) = \frac{E(x_{i})}{k} \left(1 - e^{-k(x - x_{i})/u}\right) \frac{[\text{NO}_{2}]}{[\text{NO}_{x}]}$$
$$k = \frac{k'[\text{OH}][\text{M}]}{([\text{NO}_{x}]/[\text{NO}_{2}])}$$

Accounts for spatially varying emission rates E_i in the urban area

Why is TROPOMI NO₂ biased low?

TROPOMI SCDs most of the time higher than OMI QA4ECV SCDs

Why is TROPOMI NO₂ biased low?

TROPOMI stratospheric NO₂ similar or lower than SAOZ

Why is TROPOMI NO₂ biased low?

Tropospheric NO₂

- Tropospheric column lower than OMI QA4ECV
- Validation: 10-50% lower than MAX-DOAS
 Points to errors in the AMF
 - A priori NO₂ profile shape
 - Surface albedo
 - Clouds

Using a-priori profiles from CAMS-regional

CAMS-rg NO2 tropospheric column, 26 July 2018

Single overpass, 26 July 2018

Using a-priori profiles from CAMS-regional

Ratio NO2 tropospheric column CAMS a-priori / TM5MP a-priori

